15 research outputs found

    Evaluating Connection Resilience for the Overlay Network Kademlia

    Full text link
    Kademlia is a decentralized overlay network, up to now mainly used for highly scalable file sharing applications. Due to its distributed nature, it is free from single points of failure. Communication can happen over redundant network paths, which makes information distribution with Kademlia resilient against failing nodes and attacks. This makes it applicable to more scenarios than Internet file sharing. In this paper, we simulate Kademlia networks with varying parameters and analyze the number of node-disjoint paths in the network, and thereby the network connectivity. A high network connectivity is required for communication and system-wide adaptation even when some nodes or communication channels fail or get compromised by an attacker. With our results, we show the influence of these parameters on the connectivity and, therefore, the resilience against failing nodes and communication channels.Comment: 12 pages, 14 figures, accepted to ICDCS2017. arXiv admin note: substantial text overlap with arXiv:1605.0800

    Cosmic History and a Candidate Parent Asteroid for the Quasicrystal-bearing Meteorite Khatyrka

    Full text link
    The unique CV-type meteorite Khatyrka is the only natural sample in which "quasicrystals" and associated crystalline Cu,Al-alloys, including khatyrkite and cupalite, have been found. They are suspected to have formed in the early Solar System. To better understand the origin of these exotic phases, and the relationship of Khatyrka to other CV chondrites, we have measured He and Ne in six individual, ~40-{\mu}m-sized olivine grains from Khatyrka. We find a cosmic-ray exposure age of about 2-4 Ma (if the meteoroid was <3 m in diameter, more if it was larger). The U,Th-He ages of the olivine grains suggest that Khatyrka experienced a relatively recent (<600 Ma) shock event, which created pressure and temperature conditions sufficient to form both the quasicrystals and the high-pressure phases found in the meteorite. We propose that the parent body of Khatyrka is the large K-type asteroid 89 Julia, based on its peculiar, but matching reflectance spectrum, evidence for an impact/shock event within the last few 100 Ma (which formed the Julia family), and its location close to strong orbital resonances, so that the Khatyrka meteoroid could plausibly have reached Earth within its rather short cosmic-ray exposure age.Comment: Submitted to Earth and Planetary Science Letter

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Towards Autonomous Self-Tests at Runtime

    No full text

    The micrometeorite flux to Earth during the Frasnian-Famennian transition reconstructed in the Coumiac GSSP section, France

    Get PDF
    We have reconstructed the distribution of extraterrestrial chrome spinels in a marine limestone section across the Frasnian-Famennian stratotype section at Coumiac in southern France, providing the first insights on the types of micrometeorites and meteorites that fell on Earth at this time. The data can test whether the small cluster of roughly coeval, large impact structures is related to an asteroid breakup and shower with possible bearings also on the late 26 Devonian biodiversity crisis. A total of ~180 extraterrestrial spinel grains (>32 microns) were recovered from 957 kg of rock. Noble-gas measurements of individual grains show high solar-wind content, implying an origin from decomposed micrometeorites. Element analyses indicate a marked dominance of ordinary chondritic over achondritic grains, similar to the recent flux. The relation between H, L and LL meteorites is ~29-58-13%, similar to the late Silurian flux, ~31-63-6%, but different from the distribution, ~45-45-10%, in the recent and the Cretaceous flux. Our data show no indication of a generally enhanced late Devonian micrometeorite flux that would accompany an asteroid shower. However, in a single limestone bed that formed immediately before the Upper Kellwasser horizon, that represents the main end-Frasnian species-turnover event, we found an enrichment of ~10 ordinary chondritic grains (>63 microns) per 100 kg of rock, compared to the ~1-3 grains per 100 kg that characterize background. The anomalously abundant grains are of mixed H, L and LL types and may be related to an enhanced flux of extraterrestrial dust during postulated minima in both the 405 ka and 2.4 Ma Earth-orbit eccentricity cycles at the onset of the Upper Kellwasser event. In the present solar system the dust accretion at Earth is the highest at eccentricity minima because of the spatial distribution of dust bands of the zodiacal cloud. Besides this small grain anomaly the data here and in previous studies support a stable meteorite flux through the late Silurian and Devonian, in contrast to the mid-Ordovician, when achondritic meteorites that are rare on Earth today were common, followed by the influx of a flood of debris related to the breakup of the L-chondrite parent body. Our accumulated data for six time windows through the Phanerozoic indicate that the ordinary chondrites make up a major fraction in the meteorite flux since at least the mid-Ordovician. We note that the sources in the asteroid belt of the H and L3 meteorites, the two most common types of meteorites today and through much of the Phanerozoic, remain elusive
    corecore